

Challenges of Composing XACML Policies

Bernard Stepien1, Amy Felty1, Stan Matwin2, 3
1School of Information Technology and Engineering, University of Ottawa, Ottawa, Canada

2Faculty of Computer Science, Dalhousie University, Halifax, Canada
3Institute for Computer Science, Polish Academy of Sciences, Warsaw, Poland

(bernard | afelty)@eecs.uottawa.ca, stan@cs.dal.ca

Abstract— XACML (eXtensible Access Control Markup
Language) is a declarative access control policy language that
has unique language constructs for factoring out access control
logic. These constructs make the specification of access control
requirements more compact than decision trees, which can be
considered the most natural way to specify access control logic.
However, many publications report that performance of
XACML policy decision point (PDP) engines is greatly affected
by the structure of policy sets. In this paper we first explore the
causes of potential inefficiencies of XACML policies, and then
propose a procedure to re-structure policy sets vertically by
modifying the distribution of access control logic among
different configurations of structural elements, in order to
remove much of this inefficiency. This is in contrast to
horizontal re-ordering of constant structural elements. Our
procedure can be applied regardless of the complexity and
structure of the original policy set. We also compare the
performance of policy sets that take advantage of the
expressive power of XACML targets to decision trees.

Keywords: access control; policy restructuring;
XACML.

I. INTRODUCTION
While early access control (AC) policy specification
languages were based on the principle of specifying simple
combinations of attribute values to govern an effect (permit
or deny), more recent languages started to incorporate
policy language constructs that take advantage of the
benefits resulting from allowing more complex
combinations, such as the aggregation of common attribute
values. This extra expressive power allows the policy writer
to reduce the number of policies required in order to comply
with a given set of AC requirements. It is a well-known fact
that there is great benefit in reducing the number of policies
because it makes the management of policies easier and also
reduces the risk of errors. The XML based XACML
language [1][2] has a number of such powerful constructs.
While in general, an AC policy can be abstracted to a
Boolean expression, XACML structures such Boolean
expressions into hierarchical groupings using the concept of
targets, which allow the specification of alternate conditions
of combinations of attribute values. XACML targets are not
pure Boolean expressions. Instead they structure logic along
specific language constructs that represent only a subset of
the capabilities of Boolean expressions. As a result, when
structuring a given policy, the AC policy designer must

make critical design choices that can impact performance of
PDPs and management of the policies in general.

These features are very efficient for specifying the most
recent AC models, especially those that are particularly
efficient for expressing fine grained AC, such as the ABAC
[3] and RBAC [4][5] models, as well as many other derived
models.

In this paper, we first review XACML structuring
mechanisms, exploring the factors that specifically govern
such structuring, in order to motivate restructuring. We then
explore the possibilities of improvements. In particular, we
present a specific procedure for restructuring policies that
has the potential to greatly increase the efficiency of policy
evaluation.

II. STRUCTURAL MODELS FOR POLICY LOGIC
SPECIFICATION

A. XACML Hierarchical Structuring Elements
XACML has two basic levels of constructs to express
structuring:

• Hierarchical partitioning blocks: policy sets that
contain other policy sets or policies that further
contain rules.

• Access control logic blocks that contain fine-
grained logic on attributes.

Figure 1: The XACML 3.0 policy set model

2014 9th International Conference on Availability, Reliability and Security

978-1-4799-4223-7/14 $31.00 © 2014 IEEE

DOI 10.1109/ARES.2014.38

234

However, one of the characteristics of XACML AC logic
blocks is that its grammar, as shown in Figure 1, allows
only specific configurations of conjunctions and
disjunctions for expressing logic in the form of targets and
conditions. Targets are used as the primary logic description
technique in all three levels of partitioning blocks: policy
sets, policies and rules. Rule conditions have an additional
level of logic expressed by pure Boolean expressions, which
are used mostly for continuous domains such as numeric
types including date and time.

1) Partition Blocks as Decision Trees
The partitioning block structural elements are organized as
decision trees where alternate edges for a given node (a
structural element) represent disjunctions only, while
sequences of edges represent conjunctions.

Access control logic is expressed using an instance of the
policy set model such as shown on Figure 2. This figure
presents the hierarchy of the partitioning blocks. At this
level, we have the structure of a decision tree. However, the
evaluation of the logic is located inside these blocks which,
instead of trees, contain graphs that each has a starting and a
terminal node. A terminal node of one block is the starting
node of a subsequent block. For example, the terminal node
of a policy target is the starting node of each child rule
targets.

Figure 2: A XACML policy logic partitioning

2) XACML Parse Tree Oriented Target Logic

In XACML 3.0, access control logic is represented inside
the target construct of each structural element (policy sets,
policies and rules). The XACML target is expressed more
like a parse tree where alternative edges represent both
disjunction and conjunction, which is radically different
from decision trees. Furthermore, there are limitations in
expressive power due to the kind of construct that is allowed
at each depth of the parse tree. For example the possible
logic expressed in a target using AnyOf and AllOf language
constructs results in specific logical patterns as shown on
Figure 3.

Figure 3: XACML 3.0 target parse tree Structure

In order to appraise the use of XACML targets in practice, it
is interesting to instead represent target logic as a directional
graph as shown on Figure 4. Such a graph can be used as a
decision graph, i.e. a top-down walk through the nodes and
edges. This graph has a very unique shape. In such a graph,
as in a decision tree, a sequence of edges determines
conjunction while alternate edges from a node represent
disjunction. In the case of XACML targets, the AnyOf
constructs are concatenated as a sequence, while the AllOf
constructs form alternate edges from a given AnyOf node.
Inside an AllOf node, the arguments are themselves
represented as sequences of matches. The most important
fact is that all the AllOfs of an AnyOf merge together to a
common terminal node that itself is either the starting node
of the next AnyOf construct, or the last node of the current
target construct as shown on Figure 4.

Figure 4: XACML 3.0 target represented as a graph

235

B. The Benefits of Structuring
Normally, the primary goal of the structuring mechanism of
XACML policies is to provide a more efficient evaluation of
requests by a Policy Decision Point (PDP). These
evaluations are performed by a top down search of the
decision tree as shown in Figure 2. A request is evaluated
first against the top level policy set target. If its logic
satisfies the request for the attributes it contains, it then
explores its children’s policies target logic. Then, once a
policy target is satisfied, it further evaluates the targets and
conditions of this policy’s child rules. If an attribute is not
used in the policy logic, this is considered as satisfying any
value that this attribute can match. If any of these structural
elements is not satisfied, it prevents the evaluation of
elements that are further down in the hierarchy. A
description of this process and its resulting savings in terms
of computation costs is provided in [7].

While the structuring mechanisms in XACML are available,
they do not prevent bad specifications, especially when
policies evolve over time. This often occurs when
modifications are performed by different engineers with
different backgrounds both in experience and programming
styles. The difficulties include the awareness of the existing
policy logic implemented at different intervals of time, as
well as and especially the knowledge of how to modify an
existing policy so as to satisfy new needs.

While these structuring mechanisms exist and have already
demonstrated their benefits, implementation inefficiencies
are not always avoided. As a result, there has been
extensive research on finding new ways to optimize policies
so as to further reduce processing time and avoid PDP
bottlenecks.

As has already been mentioned in [7], there are cases where
the principle of hierarchical structures of decision trees does
not avoid searching all the rules of a policy or at least some
of its subtrees. Effectively, the efficiency of this process can
depend on the distribution of logic expressed as match
expressions on attributes among these structural elements.
For example, let’s consider an AC specification where we
have structured the logic in three policies P1, P2 and P3 and
further in corresponding rules. The logic in our examples
uses two attributes and their related matching values, i.e. a
resource R {r1, r2, r3} and an action A {a1, a2, a3}. Each
policy has a different number of rules depending on the way
we distribute the matches for each attribute among policy
and rule targets. In the ABAC model and its implementation
language XACML 3.0, the order of attributes in the parse
tree representing a XACML target is not prescribed. Thus,
several different policy writers could use different orders.
This will naturally lead to redundancies for a specific effect,
or conflicts in the case of the use of opposite effects (e.g.,
Permit/Deny). Here we use a single match in each partition
level. Figure 5 shows two different structuring strategies.

• Policy set 1 has an inversion in attribute

distribution between policies and rules for
describing logic. For example policy P1 and P2
targets handle attribute R in the policy target and
attribute A in the rule target while policy P3 does
the reverse.

• Policy set 2 follows the principle of using only one
homogeneous kind of attribute in the respective
levels of policy and rule target. Policy targets
contain only attribute R expressions, while rule
targets contain only attribute A expressions.

For these particular configurations, policy set 2 is more
efficient since for example it requires only four comparisons
to find the matches for attribute A value a3 and attribute R
value r3 while it requires six comparisons to achieve the
same result for policy set 1. In more detail, for policy set 1,
the six targets of policies P1, P2, P3 and rules R3, R4 and R5
are evaluated while for policy set 2, only the four targets for
policies P1, P2, P3 and rule R5 are evaluated.

Figure 5: Equivalent policy set structures

Table 1 shows the PDP request processing costs in terms of
comparisons for each combination of attribute values that is
covered by the policy sets along with the total cost for
evaluating requests for all combinations of values.

Requests/policy sets PS1 PS2
R: r1 and A: a1 7 5
R: r2 and A: a2 7 5
R: r1 and A: a3 6 5
R: r2 and A: a3 6 5
R: r3 and A: a3 6 4

Total comparisons costs 32 24
Table 1: Request processing costs

236

In the above example, we have considered only the five
requests that will return an effect of permit or deny. All
remaining cases would return not applicable. Normally, with
the cardinality of this example there are nine possible
combinations of requests |{r1, r2, r3}| x |{a1, a2, a3}| = 9. The
total comparison costs shown in Table 1 suggest a plain
average cost indicator where each request has the same
probability of occurrence as others. Operational realities
would be more along a weighed cost configuration.
Effectively, resources are not used in an equal manner by
the same subjects for the same actions. Some resources are
used more than others and even changes of usage pattern
can occur depending on external events as reported in [6].

C. Expressing Access Control Requirements As Decision
Trees

Decision trees [12] are well-known for expressing access
control logic [14][16]. They are in fact the most efficient
representation from the point of view of request processing
by a PDP, since a subtree will be explored only if its parent
edge satisfies the request. Boolean expressions are decision
trees. XACML rules have conditions that are Boolean
expressions. Structuring capabilities of Boolean expressions
have been explored in [10]. However, from an access
control logic specification point of view decision trees
require considerable redundancy of definitions. For
example, given the alphabets for three attributes
representing subject, resource and action S = {s1, s2}, R =
{r1, r2, r3}, A = {a1, a2}, we obtain one possible decision tree
for the complete state space regardless of the effect (permit
or deny) as shown on Figure 6.

Figure 6: XACML policy set decision tree

Also, we can observe that Figure 6 shows what could be
specification redundancies. Effectively, the subtrees of the
edges s1 and s2 that consist of logic for attributes R and A
are identical. In reality, this might not be the case since each
leaf is associated with potentially different effects (permit or
deny or not-applicable). It is the distribution of these effects
that will determine which subtrees are either fully or
partially redundant.

Also, decision trees can be structured differently in ordering
the attributes among each level of the tree. For our above

example, the three attributes can produce six possible
different hierarchical structures for the decision tree
representing their combinations as shown on Figure 7.

Figure 7: Decision tree equivalence

However, it is interesting to note that these equivalent
variants of the same decision tree are also equivalent from a
PDP request evaluation performance point of view. For
example, the worst case represented by a request using the
last value in the set of each attribute s2, r3 and a2 requires
exactly 7 match attempts before finding a full match
satisfying all attributes. Thus, re-ordering full state space
decision trees is of no value from a request evaluation
performance point of view. However, we have determined
that partial trees for a given effect could gain from re-
ordering. However decision trees are considerably
inefficient from an administration point of view because
they produce redundant subtrees.

Finally, other methodologies, some graphical, can be used to
design access control policy sets. [15] proposes a procedure
based on business process models. [17] proposes a similar
process as role mining in RBAC for ABAC.

III. THE ART OF RESTRUCTURING XACML POLICY SETS

A. A Review of Existing Restructuring Algorithms and
Procedures

XACML restructuring algorithms can be classified into two
broad categories:

• Horizontal re-ordering, consisting of optimizing
the order of alternate children of policy sets (policy
sets or policies) and/or optimizing the order of
child rules of policies, as described in [6]. This also
includes weighing requests according to statistical
usage. In this approach, the overall vertical
structure remains constant, i.e. the content of
policy sets, policies and rules and their
corresponding targets expressions remain constant.

• Vertical re-ordering, consisting of redistributing
logic among hierarchical partitioning blocks
including changing the configuration of these

237

blocks entirely [7] [9]. For example interchanging
the logic contained in a rule target with one of its
parent policies, or even further upstream targets of
policy set parents. Consequently, vertical
restructuring produces completely different
contents of policy sets, policies or rules.

B. A Procedure for Vertical Restructuring

1) Limitations of the Subsumption Algorithm
In previous work, we have defined a subsumption algorithm
for compressing policies [9]. This algorithm cannot solve
the problem of restructuring the three policies of policy set 1
in Figure 5. This is because this subsumption algorithm
works only in the case where Boolean expressions resulting
from the sequences of elements in policy set, policy and rule
targets have n-1 attribute expressions in common, where n is
the total number of attributes used in such a Boolean
expression. In fact, this algorithm works only for specific
structures that consist of a conjunction, where each element
is either an atomic operation or a disjunction of operations
on the same attribute.

For example the two following Boolean expressions:

A1 == v1 /\ A2 == v2 /\ A3 == v3
A1 == v1 /\ A2 == v2 /\ A3 == v4

can be collapsed into the following single expression:

A1 == v1 /\ A2 == v2 /\ (A3 == v3 \/ A3 == v4)

In the example of Figure 5, the n - 1 common elements
restriction is not satisfied since all operations have different
attribute values as shown in Table 2.

Attribute Policy 1 Policy 2 Policy 3

A A == a1 A == a2 A == a3

R R == r1 R == r2 R == r1 \/ R == r2 \/ R == r3

Table 2: Heterogeneity of attribute operations

However, we can show that policy set 1 can still be used to
derive policy set 2 which is not compressed in the sense of
[9]. In particular, it does not produce a compressed policy
set that contains a reduced number of policies and/or rules,
but its overall structure is more efficient. For example, in
our case, policy set 1 and 2 contain exactly the same number
of policies or rules but the access control logic is distributed
differently among them. We have found that the
subsumption algorithm can still be used by first deriving the
traces from policy set 1 and applying the algorithm on the
traces instead of the original policy set. These traces can
have n - 1 common elements and thus be compressed into
policies with more complex expression content:

Trace 1: R == r1 /\ A == a1
Trace 2: R == r2 /\ A == a2

Trace 3: A == a3 /\ R == r1
Trace 4: A == a3 /\ R == r2
Trace 5: A == a3 /\ R == r3

2) Using Decision Trees

Decision trees can be implemented in XACML using the
recursive nature of the policy set language construct.
However, they can be fastidious to compose due to the
verbosity of XACML. Here, we will discuss the
transformation of a decision tree into a more compact
XACML structure that uses the aggregation capabilities of
the XACML target. The purpose of this exercise is to
determine which of the structures—decision trees or
compact XACML policy sets—is the more efficient.

As we have mentioned above, a XACML policy set is a
kind of decision tree and the restructuring process that uses
the subsumption algorithm can be performed only on one
subset of the decision tree at a time corresponding to a
specific effect (permit or deny separately). For example in
the three-attribute decision tree depicted in Figure 8, the
black edges correspond to the effect permit and the grayed
edges correspond either to the effect deny or to the effect
not-applicable.

Figure 8: XACML decision subtree for effect permit

From that decision tree or from any corresponding XACML
decision tree/graph hybrid, we can easily derive the five
following traces merely by walking the tree once and
collecting the traces of edges back to the root:

Trace 1: S == s1 /\ R == r1 /\ A == a1
Trace 2: S == s1 /\ R == r1 /\ A == a2
Trace 3: S == s1 /\ R == r3 /\ A == a2
Trace 4: S == s2 /\ R == r2 /\ A == a1
Trace 5: S == s2 /\ R == r3 /\ A == a2

These traces can also represent policies expressed in
simple logic, consisting of a list of single conjunctions,
similar to Access Control Lists (ACL) policies. This logic
can itself be distributed among XACML structural
components (policy set, policy and rule) producing
equivalent logic. These five traces/policies can be
compressed using the subsumption algorithm described in
[9], giving one possible policy set shown as a hybrid
decision tree in Figure 9.

238

These examples demonstrate the challenges facing the
policy designer when composing XACML policy sets. A
manual optimization could be complex. An illustration of
these challenges can be derived from [7]. Effectively they
propose an algorithm for computing performance of various
randomly or manually restructured policy sets. They do not
show any restructuring algorithm per se. Thus, the novelty
of our approach is in the automation of this process.

Figure 9: Policy set compression result (S-R-A)

Interesting is the fact that when this procedure is applied to
policy set 1 in Figure 5, we indeed obtain policy set 2 which
is the more efficient policy set configuration. Also, if we
change the order of attributes in the decision tree of Figure 8
we obtain always the same identical tree shown in Figure 9,
with the only difference being that the attributes change
levels, with each level retaining the same structure
(AnyOfs), like for example the tree of Figure 10. However,
these trees produce different average number of
computation costs.

Figure 10: Compression result on resource, action,

subject ordering (R-A-S)
In Table 3Table 3, we have summarized the computation
costs for the original decision tree and two possible vertical
orderings of attribute expressions. As expected, the decision
tree has the best performance while the XACML hybrid
decision/graph trees have equal costs. Normally one would
expect that the XACML code restructuring produces code
savings. This particular example does not. The duplication
of expressions exists in both cases. However, this is mainly
due to the nature of the example, the subset of the decision
tree chosen and the limited number of attributes.

Requests Decision
tree

S-R-A
ordering

R-A-S
ordering

s1-r1-a1 3 4 4
s1-r1-a2 4 5 5
s1-r3-a2 3 5 5
s2-r2-a1 3 3 3
s2-r3-a2 4 6 6

Total costs 17 23 23
Table 3: Cost comparison on order of attributes

Also, it is interesting to note that the resulting restructured
policy set of Figure 9 shows a different kind of redundancy
on the first level composed of policy sets, where the targets
for attribute S show values s1 and s2 first separately and then
combined into an AnyOf. This in fact is the result of the
restrictive grammar of the XACML target language
construct, and is not an oddity resulting from a faulty
restructuring algorithm. Also, this does not mean that the
XACML language is bad but instead shows the limitation of
factoring out common behavior in general.

3) Enhancement of the Subsumption Algorithm
The results of the subsumption algorithm shown in Figure 9
are however suggesting a possible enhncement.of this
algorithm. Effectively, the presence of duplicate operations
on the same attribute s1 and s2 could be factored out by
connecting the subtree r3 – a2 to both of the other subtrees
starting with operations on attributes s1 and s2 individually
rather than as a disjunction. The result of this additional step
shown in Figure 11 is rather surprising because it produces
the decision tree from which we started with in the first
place with an insignificant difference in the horizontal
ordering of the subtrees. However, this same result is not
achievable by attempting to refine Figure 10 because there
are no duplicate operations, neither on the first level nor any
subsequent level. This, in itself is an interesting property
that shows that the vertical ordering of attributes is in fact
important. Thus, at first glance, the algorithm needs to be
applied several times in order to find the more efficient
configuration. However, the problem is that the number of
orderings can be non-polynomial. This can be easily
avoided altogether by instead inspecting each level of the
tree individually to detect attribute operation duplications.
When a level reveals such a duplication, the entire level can
be pushed to the top where the factoring out can then be
performed.

From a practical point of view, this exercise produced some
interesting findings. It shows that any policy set structure
can be transformed into a decision tree using the enhanced
subsumption algorithm. Also, the policy set of Figure 10
could have been the starting point because this policy set
could have been manually encoded by some policy
engineer. In this case, generating traces from this policy set

239

and applying the enhanced subsumption algorithm on them
would have resulted in the more performant decision tree.

Figure 11: Enhanced compressed policy

4) Transforming Boolean Expressions into XACML

Structural Elements

In figures 9, 10 and 11 we have suggested the XACML
structural elements of policy sets, policies and rules for each
level of the decision trees for the purpose of better
understanding. This was for convenience purposes only. The
subsumption algorithm for vertical restructuring does not
produce this naturally. However, this structure can be easily
derived. First of all, the bottom level always needs to be a
rule. Thus, working upward, the level above the rule level
naturally becomes a policy while any levels above the
policy level all become policy sets because policy sets are
the only recursive constructs in XACML. Also, it is
important to note this procedure produces a flattening of
Boolean expressions. Effectively, after generating the traces,
the relationship between elements of the trace and XACML
structural elements disappears. This means that it is no
longer possible to distinguish that a conjunction is the result
of a target AllOf element or the natural conjunction linking
policy sets to their child policies or policies to their child
rules.

IV. SUMMARY OF THE PROCEDURE FOR RESTRUCTURING
XACML POLICIES

A. General Procedure Summary
In light of these findings, we propose the following
procedure for performing vertical and horizontal
restructuring of XACML policy sets.

• Step 1: transform a XACML policy set into a
graph which is a hybrid between a decision
tree and sub-graphs.

• Step 2: generate all the traces of that graph.
The traces represent pure conjunctions
between attributes match expressions and thus
each trace can be used as a policy.

• Step 3: perform the subsumption policy
compression algorithm [9] on these traces.

• Step 4: factor out duplicate operations on the
same decision tree level.

• Step 5: perform horizontal restructuring [6]
based on probabilities of requests.

• Step 6: compute the total cost of request
processing of the compressed policies using
the algorithm proposed in [7].

• Step 7: repeat step 2 to 5 using a different
order in the sequence of attribute conditions of
traces as a best-first search heuristic.

• Step 8: compare costs of the various orderings
of attributes and choose the best one.

B. Handling Absent Attributes
In a XACML policy, when an attribute is not used in a
match expression, this is equivalent to specifying all values
that a given attribute can have, i.e. its full alphabet. This is
indeed a very powerful feature that does not exist in many
other AC languages. However, the absence of an attribute
has very interesting benefits from a computation cost point
of view since by definition it eliminates a number of
computations altogether. Currently the policy compression
algorithm from [9] cannot handle such cases. Solutions to
include absent attributes are proposed in [16] where they are
called missing attributes. However, the use of such an
approach is for further study.

C. Proof of Equivalence
In previous work [9] on the subsumption algorithm, we have
already demonstrated the benefits of using theorem proving
techniques to provide correctness guarantees for our
algorithm. In particular, in that work, we used the Coq
Proof Assistant [19] to prove that a compressed policy set is
equivalent to an original collection of simple policies. In
this work, we can also provide such formal correctness
guarantees, which in this case show that the results of
restructuring are equivalent to the original complex policy
sets. For example, we have verified the equivalence of the
policy sets of Figure 5. XACML target match expressions
can be easily proved equivalent with a single Coq command
“tauto” that is able to automatically prove tautologies in
propositional logic, which is our case here. For the
interested reader, we give the full Coq script for this
example. Both original and compressed policy sets are
expressed as Boolean expressions as follows:

Section figures_5.

Inductive resources: Set := R1 | R2 | R3.
Inductive actions: Set := A1 | A2 | A3.

Variable R:resources.
Variable A:actions.

Definition PS1 := (R=R1 /\ A=A1)
 \/ (R=R2 /\ A=A2)
 \/ (A=A3 /\ (R=R1 \/ R=R2 \/ R=R3)) : Prop.

Definition PS2 := (R=R1 /\ (A=A1 \/ A=A3))
 \/ (R=R2 /\ (A=A2 \/ A=A3))

240

 \/ (R=R3 /\ A=A3): Prop.

Lemma fig5a :PS1 -> PS2.
Proof.
unfold PS1, PS2. tauto.
Qed.

Lemma fig5b : PS2 -> PS1.
Proof.
unfold PS1, PS2. tauto.
Qed.

Theorem fig5 : PS1 <-> PS2.

Proof.
split. exact fig5a. exact fig5b.
Qed.

End figures_5.

V. FUTURE WORK
The redundancies of specification caused by the XML
hierarchical model of monolithic trees, both in XACML and
decision trees could be avoided. Other tree-based
specification languages in a variety of other fields different
from access control use the concept of decision tree. This is
the case, for example, in the Tree and Tabular Combined
Notation (TTCN) [18] that is used for specifying tests in the
domain of telecommunication protocols. TTCN uses the
concept of collections of trees, where each individual tree
can be attached to the leaves of any other tree. This
technique allows unlimited re-usability of subtrees. This
feature actually already exists in XML with the reference
mechanism for schemas and there are already two similar
concepts in XACML, namely, policy and policy set
references and variables. However these references are used
exclusively as an inheritance mechanism and apply to an
entire policy, while XACML variables are snippets of
Boolean expressions that can be used only in rule conditions
and are not re-usable in the more restrictive XACML target.
Thus, we propose to introduce the concept of independent
sub-tree definitions and the attachment mechanism. Also,
complex models such as the RBAC profile [11] may not be
amenable to such a restructuring procedure, mainly because
they are highly dependent on policy and rule combining
algorithms, which operate on sets of intentional opposite
effects (permit/deny).

VI. CONCLUSION
In this paper, we have examined some key factors in

understanding problems of adequately structuring XACML
policy sets and shown the limitations of re-structuring
procedures when taken individually. We have proposed a
procedure that combines these diverse procedures into a
single procedure with the goal of increasing efficiency of
the evaluation of requests against a policy.

ACKNOWLEDGEMENTS
The authors acknowledge the support of the Natural

Sciences and Engineering Research Council of Canada.

REFERENCES

[1] XACML 2.0 OASIS standard DOI= http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

[2] XACML 3.0 OASIS standard DOI= http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf

[3] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller,
R. Miller, K. Scarfone, Guide to attribute based access control
(ABAC) definition and considerations, in NIST Special Publication
800-162, January 2014, http://nvlpubs.nist.gov/nistpubs/-
specialpublications/NIST.sp.800-162.pdf

[4] D. F. Ferraiolo, D. R. Kuhn, Role-based access control, in Fifteenth
National Computer Security Conference, pp. 554-563, 1992.

[5] S. Verma, S. Kumar, M. Singh, Comparative Analysis of role base
and attribute base access control model in semantic web, in
International Journal of Computer Applications, vol. 46, no. 18, pp.
1-6, May 2012.

[6] S. Marouf, M. Shehab, A.Squicciarini, S. Sundareswaran, Adaptive
reordering and clustering-based framework for efficient XACML
policy evaluation, in IEEE Transactions on Services Computing, vol.
4, no. 4, pp. 300-313, Oct.-Dec. 2011.

[7] P. L. Miseldine, Automated XACML policy reconfiguration for
evaluation optimisation, in Fourth International Workshop on
Software Engineering for Secure Systems, pp. 1-8, 2008.

[8] V. Kolovski, J. Hendler, B. Parsia, Formalizing XACML using
defeasible description logics, in U. of Maryland technical report,
2007, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.78.-
3914&rep=rep1&type=pdf .

[9] B.Stepien, S. Matwin, A. Felty, An algorithm for compression of
XACML access control policy set by recursive subsumption, in
Seventh International Conference on Availability, Reliability, and
Security, pp. 161-167, 2012.

[10] B. Stepien, S. Matwin, A. Felty, Strategies for reducing risks of
inconsistencies in access control policies, in Fifth International
Conference on Availability, Reliability, and Security, pp. 140-147,
2010.

[11] OASIS, XACML 3.0 Core and Hierarchical Role Base Access
Control (RBAC) Profile version 1.0, in http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cd-03-en.html

[12] K.-M. Leung, “Decision trees and decision rules,” presentation slides,
http://cis.poly.edu/~mleung/FRE7851/f07/decisionTrees.pdf,
December 2007. Accessed: 2014-01-07.

[13] Y. Yuan and M. J. Shaw, Induction of fuzzy decision trees, in Fuzzy
Sets and systems, vol. 69, no. 2, pp. 125–139, 1995.

[14] V. Zaliva, Firewall policy modelling, analysis and simulation: a
survey, 2008, http://www.crocodile.org/lord/fwpolicy.pdf.

[15] C. Wolter, A. Schaad, C. Meinel, Deriving XACML policies from
business process models, in Web Information Systems Engineering—
WISE 2007 Workshops, pp 142-153, 2007.

[16] R. A. Shaik, K. Adi, L. Logrippo, S. Mankovski, Inconsistency
detection method for access control policies in Sixth International
Conference on Information Assurance and Security, pp. 204-209,
2010.

[17] L. Krautsevitch, A. Lazouski, F. Martinelli, A. Yautsiukhin, Towards
policy engineering for attribute-based access control, in Trusted
Systems, Springer Verlag Lecture Notes in Computer Science, vol.
8292, pp 85-102, 2013.

[18] ITU X.292 standard, Tree and Tabular Combined Notation (TTCN).
[19] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program

Development, Springer Verlag, 2004.

241

